19 research outputs found

    Virtual power plant models and electricity markets - A review

    Get PDF
    In recent years, the integration of distributed generation in power systems has been accompanied by new facility operations strategies. Thus, it has become increasingly important to enhance management capabilities regarding the aggregation of distributed electricity production and demand through different types of virtual power plants (VPPs). It is also important to exploit their ability to participate in electricity markets to maximize operating profits. This review article focuses on the classification and in-depth analysis of recent studies that propose VPP models including interactions with different types of energy markets. This classification is formulated according to the most important aspects to be considered for these VPPs. These include the formulation of the model, techniques for solving mathematical problems, participation in different types of markets, and the applicability of the proposed models to real case studies. From the analysis of the studies, it is concluded that the most recent models tend to be more complete and realistic in addition to featuring greater diversity in the types of electricity markets in which VPPs participate. The aim of this review is to identify the most profitable VPP scheme to be applied in each regulatory environment. It also highlights the challenges remaining in this field of study

    Characterising the security of power system topologies through a combined assessment of reliability, robustness, and resilience

    Get PDF
    Electricity has a prominent role in modern economies; therefore, ensuring the availability of electricity supply should be a top priority for policymakers. The joint assessment of reliability, robustness, and resilience can be a useful criterion to characterise different topologies and improve the security of supply. This paper proposes a novel integrated analysis of these three attributes to quantify the security of power grid topologies. Hence, eight case studies with different topologies created using the IEEE 24-bus reliability test system were analysed. Reliability was evaluated by applying the sequential Monte Carlo approach, robustness was evaluated by simulating cascading failures, and resilience was evaluated by analysing recovery curves. The different indicators associated with each of the three evaluations were then calculated. The results obtained were discussed both graphically and quantitatively in a novel three-dimensional representation, where the importance of joint analysis was also highlighted. The proposed method can serve as an additional tool for planners to identify possible investments or improvements in power system topologies

    Optimal short-term water-energy dispatch for pumping stations with grid-connected photovoltaic self-generation

    Get PDF
    Increases in the energy costs of irrigation water pumping facilities puts the economic sustainability of recent investments in the modernization of farms at risk. To address this problem, it is essential to apply renewable technologies for the production of electricity, and photovoltaic energy is particularly attractive due to its lower cost and recent technological advances. The aim of this research is to develop a mathematical techno-economic dispatch model that optimizes the hourly schedule of pumping equipment subject to electrical and hydraulic constraints to minimize the weekly operating costs of a real pumping station. The resulting model is formulated as a mixed-integer nonlinear programming problem that determines the optimal hourly combination of pumping equipment and available resources to meet water and energy needs. The proposed model comprises fixed and variable speed pumps, a grid-connected photovoltaic plant, and two water ponds for internal regulation and storage. The results verify that the combination of self-consumption photovoltaic facilities and variable speed drives make it possible to maximize the percentage of self-consumed energy up to 99.41% during the month with the highest demand for water. In this case, the pumping station reduces its energy costs by 21.56%, in addition to improving water management

    Integrated risk assessment for robustness evaluation and resilience optimisation of power systems after cascading failures

    Get PDF
    Power systems face failures, attacks and natural disasters on a daily basis, making robustness and resilience an important topic. In an electrical network, robustness is a network’s ability to withstand and fully operate under the effects of failures, while resilience is the ability to rapidly recover from such disruptive events and adapt its structure to mitigate the impact of similar events in the future. This paper presents an integrated framework for jointly assessing these concepts using two complementary algorithms. The robustness model, which is based on a cascading failure algorithm, quantifies the degradation of the power network due to a cascading event, incorporating the circuit breaker protection mechanisms of the power lines. The resilience model is posed as a mixed-integer optimisation problem and uses the previous disintegration state to determine both the optimal dispatch and topology at each restoration stage. To demonstrate the applicability of the proposed framework, the IEEE 118-bus test network is used as a case study. Analyses of the impact of variations in both generation and load are provided for 10 simulation scenarios to illustrate different network operating conditions. The results indicate that a network’s recovery could be related to the overload capacity of the power lines. In other words, a power system with high overload capacity can withstand higher operational stresses, which is related to increased robustness and a faster recovery process

    Comparative assessment of different solar tracking systems in the optimal management of PV-operated pumping stations

    Get PDF
    The integration of photovoltaic energy in pumping systems is complex, and the technical constraints of hydraulic and pumping systems must be considered. Exploitation models that link energy management with water management are necessary to ensure the profitability of these investments. This research proposes the design and application of a mathematical model for optimal hourly operation of pumping equipment at the minimum cost for a pumping station with different configurations of self-consumption photovoltaic generation for one week, subsequently extended to an entire year. The proposed optimization problem is formulated as a mixed-integer nonlinear model. Findings of this paper indicate that a self-consumption photovoltaic plant with single-axis solar tracking can increase production by 33.4% and reduce operating costs by 28.9% compared to a fixed system. Therefore, more energy is self-consumed (81.6%), and a more efficient pumping operation is achieved. The use of a two-axis tracker improves photovoltaic production by 3.2% with economic savings of 4.8% compared to a single-axis tracker, but this difference is small considering its higher investment costs and technical complexity. As a result, the single-axis solar tracker is generally used in pumping stations to achieve efficient management and reduced operating costs

    Optimal cooperative model for the security of gas supply on European gas networks

    Get PDF
    Natural gas infrastructures play a key role in the transition towards the new energy model, with a high share of renewable energies, both ensuring the firm capacity of electric power systems and integrating all energy vectors. The European Union (EU) strongly depends on external natural gas suppliers and is thus particularly vulnerable. In the event of supply problems due to natural phenomena, technical failures or other threats, cooperation between EU countries would be essential to best solve a supply crisis. This study proposes an EU cooperative model to meet the gas demand over a fourteen-day crisis, using a mathematical optimisation approach for resources and infrastructure. The model considers the dynamic management of underground gas storage facilities, limiting daily withdrawal based on the amount of working gas available in each storage facility. The ability of the model to make quick decisions is illustrated in six gas-demand case studies of the European cold wave in January 2017 and hypothetical supply disruptions

    Techno-economic model and feasibility assessment of green hydrogen projects based on electrolysis supplied by photovoltaic PPAs

    Get PDF
    The use of hydrogen produced from renewable energy enables the reduction of greenhouse gas (GHG) emissions pursued in different international strategies. The use of power-purchase agreements (PPAs) to supply renewable electricity to hydrogen production plants is an approach that can improve the feasibility of projects. This paper presents a model applicable to hydrogen projects regarding the technical and economic perspective and applies it to the Spanish case, where pioneering projects are taking place via photovoltaic PPAs. The results show that PPAs are an enabling mechanism for sustaining green hydrogen projects

    Optimal scheduling and management of pumped hydro storage integrated with grid-connected renewable power plants

    Get PDF
    Pumped hydro-energy storage will become a fundamental element of power systems in the coming years by adding value to each link in electricity production and the supply chain. The growth of these systems is essential for improving the integration of renewables and avoiding dependence on fossil fuel sources, such as gas or oil. This paper presents the modeling and application of an optimal hourly management model of grid-connected photovoltaic and wind power plants integrated with reversible pump-turbine units to maximize the monthly operating profits of the energy system and meet electricity demand. The techno-economic dispatch model is formulated as a mixed-integer optimization problem. To assess the proposed model, it is applied to a Spanish case study system, and the results are obtained for an entire year. The combination of renewable energy and pumped hydro energy storage reduces energy dependence by decreasing energy costs by 27 % compared with a system without storage to satisfy the required electricity demand. The findings confirm that storage plays a key role in energy transition to ensure the security and stability of power systems with a higher share of renewable generation

    Security assessment of cross-border electricity interconnections

    Get PDF
    Cross-border electricity interconnections are important for ensuring energy exchange and addressing undesirable events such as power outages and blackouts. This paper assesses the performance of interconnection lines by measuring their impacts on the main reliability and vulnerability indicators of interconnected power systems. The reliability study is performed using the sequential Monte Carlo simulation technique, while the vulnerability assessment is carried out by proposing a cascading failures methodology. The conclusions obtained show that highly connected infrastructures have simultaneously high reliability and limited robustness, which suggests that both approaches show different operational characteristics of the power system. Nevertheless, an appropriate increase in the number and capacity of the interconnections can help to improve both security parameters of the power supply. Seven case studies are performed based on the IEEE RTS-96 test system. The results can be used to help transmission system operators better understand the behaviour and performance of electrical networks

    Geodesic vulnerability approach for identification of critical buses in power systems

    Get PDF
    One of the most critical issues in the evaluation of power systems is the identification of critical buses. For this purpose, this paper proposes a new methodology that evaluates the substitution of the power flow technique by the geodesic vulnerability index to identify critical nodes in power grids. Both methods are applied comparatively to demonstrate the scope of the proposed approach. The applicability of the methodology is illustrated using the IEEE 118-bus test system as a case study. To identify the critical components, a node is initially disconnected, and the performance of the resulting topology is evaluated in the face of simulations for multiple cascading faults. Cascading events are simulated by randomly removing assets on a system that continually changes its structure with the elimination of each component. Thus, the classification of the critical nodes is determined by evaluating the resulting performance of 118 different topologies and calculating the damage area for each of the disintegration curves of cascading failures. In summary, the feasibility and suitability of complex network theory are justified to identify critical nodes in power systems
    corecore